人工智能让研究人员能检查当今科学仪器产生的大量数据,
改变了科学实践。使用深度学习,可以从数据本身中学习,在数据的海洋中大海捞针。人工智能正在推动基因搜索、药学、药物设计和化合物合成的发展。为了从新数据中提取信息,深度学习要使用算法,算法通常是在海量数据上训练出来的神经网络。按照其分步说明,它与传统计算有很大的不同。它从数据中学习。深度学习没有传统计算编程那么透明,这留下了一个悬而未决的重要问题:系统学到了什么,它知道什么?五十年来,计算机科学家一直在试图解决蛋白质折叠问题,但没有成功。2016 年 Google 母公司 Alphabet 的人工智能子公司 DeepMind 推出了 AlphaFold 计划。利用蛋白质数据库作为训练集,该库中包含了超过 15 万种蛋白质的经验确定结构。不到五年的时间里,AlphaFold 就解决了蛋白质折叠问题,或者至少解决了其中最重要的方面:根据氨基酸序列识别蛋白质结构。AlphaFold 无法解释蛋白质是如何如此快速而精准地折叠的。这对人工智能来说是一次巨大的胜利,因为它不仅赢得了很高的科学声誉,而且是一项可能影响每个人生活的重大科学突破。